BGP Support for TTL Security Check Feature Overview
The BGP Support for TTL Security Check feature introduces a lightweight security mechanism to protect eBGP peering sessions from CPU utilization-based attacks. These types of attacks are typically brute force Denial of Service (DoS) attacks that attempt to disable the network by flooding the network with IP packets that contain forged source and destination IP addresses.
This feature protects the eBGP peering session by comparing the value in the TTL field of received IP packets against a hop count that is configured locally for each eBGP peering session. If the value in the TTL field of the incoming IP packet is greater than or equal to the locally configured value, the IP packet is accepted and processed normally. If the TTL value in the IP packet is less than the locally configured value, the packet is silently discarded and no ICMP message is generated. This is designed behavior; a response to a forged packet is unnecessary.
Although it is possible to forge the TTL field in an IP packet header, accurately forging the TTL count to match the TTL count from a trusted peer is impossible unless the network to which the trusted peer belongs has been compromised.
This feature supports both directly connected peering sessions and multihop eBGP peering sessions. The BGP peering session is not affected by incoming packets that contain invalid TTL values. The BGP peering session will remain open, and the router will silently discard the invalid packet. The BGP session, however, can still expire if keepalive packets are not received before the session timer expires.
Configuring the TTL Security Check for BGP Peering Sessions
The BGP Support for TTL Security Check feature is configured with the neighbor ttl-security command in router configuration mode or address family configuration mode. When this feature is enabled, BGP will establish or maintain a session only if the TTL value in the IP packet header is equal to or greater than the TTL value configured for the peering session. Enabling this feature secures the eBGP session in the incoming direction only and has no effect on outgoing IP packets or the remote router. The hop-count argument is used to configure the maximum number of hops that separate the two peers. The TTL value is determined by the router from the configured hop count. The value for this argument is a number from 1 to 254.
Configuring the TTL Security Check for Multihop BGP Peering Sessions
The BGP Support for TTL Security Check feature supports both directly connected peering sessions and multihop peering sessions. When this feature is configured for a multihop peering session, the neighbor ebgp-multihop router configuration command cannot be configured and is not needed to establish the peering session. These commands are mutually exclusive, and only one command is required to establish a multihop peering session. If you attempt to configure both commands for the same peering session, an error message will be displayed in the console.
To configure this feature for an existing multihop session, you must first disable the existing peering session with the no neighbor ebgp-multihop command. The multihop peering session will be restored when you enable this feature with theneighbor ttl-security command.
This feature should be configured on each participating router. To maximize the effectiveness of this feature, the hop-countargument should be strictly configured to match the number of hops between the local and external network. However, you should also consider path variation when configuring this feature for a multihop peering session.
Benefits of the BGP Support for TTL Security Check Feature
The BGP Support for TTL Security Check feature provides an effective and easy-to-deploy solution to protect eBGP peering sessions from CPU utilization-based attacks. When this feature is enabled, a host cannot attack a BGP session if the host is not a member of the local or remote BGP network or if the host is not directly connected to a network segment between the local and remote BGP networks. This solution greatly reduces the effectiveness of DoS attacks against a BGP autonomous system.
No comments:
Post a Comment